
 129

CLIMATE AND HEALTH: SCIENCE-BASED POLICY SOLUTIONS

Case study prepared by: 

H. Mugiyo, V.G.P. Chimonyo, R. Kunz, M. Sibanda,  
L. Nhamo, C. Ramakgahlele Masemola, Tsitsi Bangira,  
A.T. Modi and T. Mabhaudhi 

South Africa

Using machine learning 
to map bioclimatic zones 
and crop yields in  
water-scarce conditions



130  Climate and Health: Science-based policy solutions

USING MACHINE LEARNING TO MAP BIOCLIMATIC ZONES  
AND CROP YIELDS IN WATER-SCARCE CONDITIONS 

Focus
Sub-Saharan Africa has severe dry spells associated with the annual Southern Oscil-

lation, including the El Niño-Southern Oscillation (ENSO), causing worldwide pre-

cipitation and temperature anomalies. Since 1900, 80% of severe droughts in the re-

gion have been connected to El Niño episodes and a record-breaking ENSO-induced 

drought in 2015/2016 affected agricultural, water, food and nutrition security (Yan 

et al., 2023).

South Africa is characterized by a mild, temperate climate, where only a small 

proportion of land (10.3%) is considered arable land, for agriculture. It is a wa-

ter-scarce country with 61% of landmass receiving less than the minimum rain-

fall to support successful, rainfed farming. Evidence shows climate change has 

increased drought frequency and severity in the country. Drought, therefore, is a 

significant threat to crop production, water resources and, more importantly, food 

and nutrition security.

Mapping drought zones 

Droughts can be meteorological, agricultural, hydrological or socioeconomic. Agri-

cultural drought includes complicated soil water stress, vegetation growth and pre-

cipitation loss. Mapping drought-prone zones and predicting drought severity are 

crucial to reducing the impacts of shocks related to water scarcity. But given there 

are four types of drought, and given there are 150 available drought indices tracking 

multiple variables, it has proved difficult to map drought risk zones accurately and 

effectively. Standard indices can be used, but they require additional observations to 

compute weights, and although data mining strategies solve some limitations, these 

also have constraints. 

Machine learning models can mitigate for these issues and be used to develop 

accurate drought data. Therefore, this study integrates existing indices, machine 

learning and data mining strategies in its model generation.

Matching under-utilized crop species

Sustainable farming practices can alleviate some of the impacts of drought. These 

practices include utilizing crops that successfully balance yield with environmen-

tal concerns, human health and general well-being. Recent research has focused on 

planting neglected and under-utilized crop species (NUS). These are typically wild 
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and/or cultivated species that were once favoured, but have since been overlooked 

(Bvenura and Afolayan, 2015; Chivenge et al., 2015)

NUS have lower yields, but they are nutritious, inexpensive and readily accessi-

ble. Most importantly, they are resistant to a variety of stresses (e.g. heat, salinity, 

drought), and thrive with minimal attention and fewer pesticides or fertilizers than 

commercial crops (Akinola et al., 2020; Mabhaudhi et al., 2019; Mohd Nizar et al., 

2021).

It is important to grow these species without affecting existing major crops, which 

are typically grown in arable and productive lands. Identifying drought-prone areas 

is also important since NUS can thrive in marginal lands – as compared to maize and 

wheat which require larger areas and more intensive farming. 

This case study, therefore, uses an integrated ‘hybrid’ model that draws on exist-

ing indices and employs machine learning to identify bioclimatic zones with high 

rainfall variability in water-scarce conditions (drought risk zones). The resultant 

data is then used to match NUS with the selected, appropriate zones.

Team
The team included researchers at the University of KwaZulu-Natal, Pietermaritzburg, 

South Africa; the International Maize and Wheat Improvement Centre, Harare, Zim-

babwe; the University of the Western Cape, Bellville, South Africa; the Water Research 

Commission of South Africa; the Council for Scientific and Industrial Research, Pre-

toria, South Africa; and the International Water Management Institute, Accra, Ghana.

Methods and models
The study used the Vegetation Drought Response Index (VegDRI); a ‘hybrid’ index 

that gleans data from existing climate tracking indices with regards rainfall (the 

Standardized Precipitation Index (SPI)), temperature (the Temperature Condition 

Index (TCI)), and vegetation (the Vegetation Condition Index (VCI)), to show the bio-

climatic zones in South Africa that have both high rainfall variability and little water. 

Rigorous machine learning techniques were used in the development of VegDRI. 

First, historical satellite climate data (1981–2019) was integrated with land use and 

cover maps of South Africa to generate five scales of drought, ranging from ‘very 

severe’ to ‘no drought’. After that, a machine learning algorithm, the Classification 

and Regression Tree (CART) (Breiman, 2001) was used to produce a new dataset and 
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create map graphics. 80% of that resultant dataset was used for training and 20% 

for validation of the training model (a typical split to ensure accuracy in machine 

learning models). The dataset was then randomly sampled and split into calibration 

and validation datasets. This procedure was implemented 100 times to evaluate the 

stability of the model. The methodology is visually represented in Figure 1. 

Drought index evaluation

Average sorghum yields obtained at the district level from official sources, were 

used to validate the results obtained from the mapping exercise. Farming house-

holds in the district were randomly selected as project focus areas. VegDRI, VCI, TCI, 

and SPI were then correlated against drought-tolerant crop yield data. The predic-

tive accuracy of the drought risk maps was then computed from a pixel-by-pixel 

Vegetation Drought Index (VegDRI) 

Satellite Data Biophysical Data Climate Data 

Data input variable • Digital Elevation
Model

• Land use land
cover

• Standardized
Precipitation Index
(SPI)

• Temperature
Condition Index
(TCI)

MODIS TERRA- 

normalized difference 

vegetation index (NDVI) 

to Vegetation Condition 
Index (VCI) 

Training database 
Categorical Time Series Time Series 

Point based information by 3*3 window pixel 

Model derivation 

Map generation 

A machine learning algorithm-Classification and regression Trees (CART) 

Generate average seasonal, rule-based regression model 

Generate grid based VegDRI map (by calculating each value per pixel)

Biophysical data map VCI, TCI, SPI data map Linear regression 

Figure 1: Flow chart of machine learning steps involved in generating the Vegetation Drought Response 
Index (VegDRI)
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comparison using weighted Kappa statistics. The Kappa statistic is used to test how 

far the data collected in a given study represents the variables measured (Heikkinen 

et al., 2006) In this case it was used to measure agreements between dry zones and 

sorghum-growing areas. 

Results
Precipitation evaluation

Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) precipitation 

data was highly correlated with observed, in-situ weather data across all weather 

stations used in South Africa. Based on these results, CHIRPS datasets can be used 

confidently for agricultural drought analysis.

VegDRI

The VegDRI map (Figure 2) shows the locations and variations of drought intensity 

in South Africa. The five scales of intensity were classified as very severe drought 

(16%), severe drought (34%), moderate drought (38%), slight drought (11%) and no 

Figure 2: Average seasonal vegetation drought response index
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drought (1% of South African agricultural land). Drought was very severe over the 

Northern Cape and Eastern Cape provinces, indicating acute water scarcity in the re-

gion. Moderate to no drought conditions were reported from the central province to 

the eastern provinces.

Figure 3: Showing the correlation between district sorghum yields and the drought indices used in the 
study for the period 2010 to 2019: (a) Vegetation Drought Response Index (VegDRI), (b) Standardized 
precipitation Index (SPI), (c) Temperature Condition Index (TCI), and (d) Vegetation Condition Index (VCI)
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Drought index evaluation

Figure 3 illustrates the performance of the four indices (VegDRI, SPI, VCI, and TCI) 

when predicting sorghum yields using data from 2010 to 2019. VegDRI proved most 

successful at predicting yields (74.1% accuracy). All the indices, however, responded 

accurately to low rainfall in the 2015/16 agricultural season, which recorded the low-

est sorghum yield in the research dataset. Overall, the three indices VegDRI, VCI, and 

TCI, performed systematically better than the precipitation-based SPI.

Figure 4 shows the accuracy of VegDRI to identify sorghum yields compared to VCI, 

TCI, and SPI using the Kappa statistic. Confidence intervals (±) indicate uncertainty 

in reported measurements, and in this case, confidence is 95%. The highest Kappa 

coefficients were observed between VegDRI and VCI, followed by TCI, meaning these 

indices were better at identifying yields than SPI, which had the lowest agreement. 

Again, the highest Kappa coefficients were observed in the 2015 agricultural season, 

which had the lowest rainfall, and which recorded the lowest sorghum yield.

The results suggest that VegDRI could map bioclimatic zones that are under stress 

and areas of high rainfall variability in South Africa. By integrating traditional drought 

Figure 4: Kappa statistic compares the accuracy with which VegDRI can predict sorghum yields (2000 to 
2019) versus the accuracy of VCI, TCI and SPI. Error bars (±) indicate 95% confidence intervals, meaning 
the results have 95% certainty of accuracy
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indicators (VCI, TCI and SPI), the South Africa VegDRI map can select crops within 

bioclimatic zones, justify disaster management actions, identify livestock produc-

tion risk zones and assess fire risk zones. 

End-users

The intended end-users of this study are farmers, extension agronomists, research-

ers, non-governmental organizations (NGOs) and private sector companies, such as 

insurance companies and banks, who all need to understand and develop drought 

resilience strategies. Similarly, local and national decisionmakers, who need to im-

prove drought response and mitigation. 

Lessons learned
1. Water-stressed bioclimatic (drought risk) zones must be identified to inform 

crop management strategies and thus improve food security in South Africa’s 

marginal lands; 

2. The most effective index for identifying agricultural drought risk zones is Veg-

DRI, although a combination of the VCI, TCI and SPI indices can detect drought 

risk, effectively;

3. Of the four indices analysed, three of them predicted sorghum yields with var-

ying levels of accuracy: VegDRI (74%), VCI (72%), TCI (66%). SPI was the least 

successful at yield prediction at 59% accuracy (Figure 4); 

4. Overall, VegDRI-based agricultural drought assessment is better at capturing 

water-stress, drought risk and yields. 

Current maps can help with the planning and management of sustainable strate-

gies in water-stressed and high rainfall areas. But drought impacts vary as much as 

their causes, and so validating and operationalising bioclimatic zone maps is crucial. 

Therefore, this study shows that the VegDRI hybrid index could be used to enhance 

agricultural support systems such as drought risk maps for early warning systems, 

crop yield forecasting models and water resource management tools.

Limitations

The study used biophysical factors to assess water-stressed bioclimatic zones that 

have high rainfall variability. These physical factors are inter-connected with the so-

cioeconomic context of drought (i.e. those affected and their specific vulnerabilities). 
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In future, innovative methods are needed to integrate and model these socioeco-

nomic factors.

Implications of the drought risk maps for crop production

Drought zone mapping is essential to drought management and integrated climate 

risk management. It helps policy makers and agriculturists plan and recommend sus-

tainable agriculture production by identifying drought-prone areas. This aligns with 

the R4 Rural Resilience Initiative framework (2011), which helps vulnerable farm-

ers adapt to climate risks by adopting sustainable intensification and climate-smart 

strategies.

Conclusion
The hybrid drought index, VegDRI, was developed using machine learning to char-

acterize bioclimatic zones in South Africa with high rainfall variability and water 

scarcity. The resulting VegDRI outperformed other drought indices in identifying wa-

ter-stressed zones and was verified using normalized sorghum crop yield data. A cor-

relation test with the normalized sorghum crop yield data proved the index’s appli-

cability. VegDRI can be extended to more sub-Saharan African regions using climate, 

satellite and biophysical data. Future research could include hydrological, soil water, 

evapotranspiration and socioeconomic factors to improve drought management ac-

tivities. This research suggests using VegDRI in agricultural decision support systems 

for crop yield forecasting, drought risk mapping and water resource management.
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